跳至橫幅的結尾
前往橫幅的開頭

MediaTek DaVinci Assistant API 介紹

跳至中繼資料的結尾
前往中繼資料的開頭

You are viewing an old version of this content. View the current version.

比較目前 View Version History

« 上一頁 版本 51 下一步 »

MediaTek DaVinci Assistant API 介紹

MediaTek DaVinci 推出 Assistant API,讓您在達哥平台上開發的 Assistant 可以串接進各式各樣的環境當中,進而達到達哥 Assistant 可以在不同環境、裝置服務您的需求。

如何分享製作好的 Assistant

當我們在達哥上建立好 Assistant 後,我們有兩種方式將 Assistant 分享給其他使用者使用:

  1. Share 該 Assistant 給對方

  2. 提供該 Assistant 的『Assistant ID 』與『發自 API Key 』給對方

    1. 若想收回該 Assistant 的服務時,僅在自己的 API Key 面板上刪除該 API Key 即可

使用 https://www.gradio.app/playground?demo=Hello_World&code=IyBQbGVhc2UgdXBkYXRlIHlvdXIgYXNzaXN0YW50IGlkIGFuZCBhcGkga2V5IGhlcmU6CkFQSV9LRVkgPSAiIgpBU1NJU1RBTlRfSUQgPSAiIgpBU1NJU1RBTlRfQVBJID0gImh0dHBzOi8vcHJvZC5kdmNib3QubmV0L2FwaS9hc3N0cy92MSIKCmltcG9ydCBtaWNyb3BpcDsgYXdhaXQgbWljcm9waXAuaW5zdGFsbCgnb3BlbmFpPT0xLjM5LjAnKTsgZnJvbSBweW9kaWRlLmh0dHAgaW1wb3J0IHB5ZmV0Y2g7IGltcG9ydCBodHRweDsgaW1wb3J0IGdyYWRpbyBhcyBncgpmcm9tIG9wZW5haSBpbXBvcnQgQXN5bmNPcGVuQUkKZnJvbSBkYXRldGltZSBpbXBvcnQgZGF0ZXRpbWUKaW1wb3J0IGpzb24KCmNsYXNzIFRyYW5zcG9ydChodHRweC5Bc3luY0Jhc2VUcmFuc3BvcnQpOgogICAgYXN5bmMgZGVmIGhhbmRsZV9hc3luY19yZXF1ZXN0KHNlbGYsIHJlcXVlc3Q6IGh0dHB4LlJlcXVlc3QpOgogICAgICAgIHJlc3AgPSBhd2FpdCBweWZldGNoKHN0cihyZXF1ZXN0LnVybCksIG1ldGhvZD1yZXF1ZXN0Lm1ldGhvZCwgaGVhZGVycz1kaWN0KHJlcXVlc3QuaGVhZGVycy5pdGVtcygpKSwgYm9keT1qc29uLmR1bXBzKGpzb24ubG9hZHMocmVxdWVzdC5jb250ZW50KSwgZW5zdXJlX2FzY2lpPUZhbHNlKS5lbmNvZGUoKSBpZiByZXF1ZXN0Lm1ldGhvZCAhPSAnR0VUJyBhbmQgcmVxdWVzdC5tZXRob2QgIT0gJ0RFTEVURScgZWxzZSBOb25lKQogICAgICAgIHJldHVybiBodHRweC5SZXNwb25zZShyZXNwLnN0YXR1cywgaGVhZGVycz1yZXNwLmhlYWRlcnMsIHN0cmVhbT1odHRweC5CeXRlU3RyZWFtKGF3YWl0IHJlc3AuYnl0ZXMoKSkpCgpjbGllbnQgPSBBc3luY09wZW5BSShiYXNlX3VybD1BU1NJU1RBTlRfQVBJLCBhcGlfa2V5PUFQSV9LRVksIGh0dHBfY2xpZW50PWh0dHB4LkFzeW5jQ2xpZW50KHRyYW5zcG9ydD1UcmFuc3BvcnQoKSkpCmlmIF9fbmFtZV9fID09ICJfX21haW5fXyI6CiAgICBhc3luYyBkZWYgc2VuZF9tZXNzYWdlKG1lc3NhZ2UsIGhpc3RvcnkpOgogICAgICAgIHRocmVhZCA9IGF3YWl0IGNsaWVudC5iZXRhLnRocmVhZHMuY3JlYXRlKG1lc3NhZ2VzPVt7InJvbGUiOiAidXNlciIgaWYgaSA9PSAwIGVsc2UgImFzc2lzdGFudCIsICJjb250ZW50IjogY30gZm9yIHAgaW4gaGlzdG9yeSBmb3IgaSwgYyBpbiBlbnVtZXJhdGUocCldKQogICAgICAgIGF3YWl0IGNsaWVudC5iZXRhLnRocmVhZHMubWVzc2FnZXMuY3JlYXRlKHRocmVhZF9pZD10aHJlYWQuaWQsIHJvbGU9J3VzZXInLCBjb250ZW50PW1lc3NhZ2UpCiAgICAgICAgcnVuID0gYXdhaXQgY2xpZW50LmJldGEudGhyZWFkcy5ydW5zLmNyZWF0ZV9hbmRfcG9sbCh0aHJlYWRfaWQ9dGhyZWFkLmlkLCBhc3Npc3RhbnRfaWQ9QVNTSVNUQU5UX0lELCBhZGRpdGlvbmFsX2luc3RydWN0aW9ucz1mIlxuVGhlIGN1cnJlbnQgdGltZSBpczoge2RhdGV0aW1lLm5vdygpfSIsIHRpbWVvdXQ9Mi4wKQogICAgICAgIHdoaWxlIHJ1bi5zdGF0dXMgPT0gJ3JlcXVpcmVzX2FjdGlvbicgYW5kIHJ1bi5yZXF1aXJlZF9hY3Rpb246CiAgICAgICAgICAgIG91dHB1dHMgPSBbXQogICAgICAgICAgICBmb3IgY2FsbCBpbiBydW4ucmVxdWlyZWRfYWN0aW9uLnN1Ym1pdF90b29sX291dHB1dHMudG9vbF9jYWxsczoKICAgICAgICAgICAgICAgIHJlc3AgPSBhd2FpdCBjbGllbnQuX2NsaWVudC5wb3N0KEFTU0lTVEFOVF9BUEkrJy9wbHVnaW5hcGknLCBwYXJhbXM9eyJ0aWQiOiB0aHJlYWQuaWQsICJhaWQiOiBBU1NJU1RBTlRfSUQsICJwaWQiOiBjYWxsLmZ1bmN0aW9uLm5hbWV9LCBoZWFkZXJzPXsiQXV0aG9yaXphdGlvbiI6ICJCZWFyZXIgIiArIEFQSV9LRVl9LCBqc29uPWpzb24ubG9hZHMoY2FsbC5mdW5jdGlvbi5hcmd1bWVudHMpKQogICAgICAgICAgICAgICAgb3V0cHV0cy5hcHBlbmQoeyJ0b29sX2NhbGxfaWQiOiBjYWxsLmlkLCAib3V0cHV0IjogcmVzcC50ZXh0Wzo4MDAwXX0pCiAgICAgICAgICAgIHJ1biA9IGF3YWl0IGNsaWVudC5iZXRhLnRocmVhZHMucnVucy5zdWJtaXRfdG9vbF9vdXRwdXRzX2FuZF9wb2xsKHJ1bl9pZD1ydW4uaWQsIHRocmVhZF9pZD10aHJlYWQuaWQsIHRvb2xfb3V0cHV0cz1vdXRwdXRzLCB0aW1lb3V0PTIuMCkKICAgICAgICBpZiBydW4uc3RhdHVzID09ICdmYWlsZWQnIGFuZCBydW4ubGFzdF9lcnJvcjoKICAgICAgICAgICAgcmV0dXJuIHJ1bi5sYXN0X2Vycm9yLm1vZGVsX2R1bXBfanNvbigpCiAgICAgICAgbXNncyA9IGF3YWl0IGNsaWVudC5iZXRhLnRocmVhZHMubWVzc2FnZXMubGlzdCh0aHJlYWRfaWQ9dGhyZWFkLmlkLCBvcmRlcj0nZGVzYycpCiAgICAgICAgYXdhaXQgY2xpZW50LmJldGEudGhyZWFkcy5kZWxldGUodGhyZWFkX2lkPXRocmVhZC5pZCkKICAgICAgICByZXR1cm4gbXNncy5kYXRhWzBdLmNvbnRlbnRbMF0udGV4dC52YWx1ZQogICAgZGVtbyA9IGdyLkNoYXRJbnRlcmZhY2Uoc2VuZF9tZXNzYWdlKQogICAgZGVtby5sYXVuY2goKQo= 進行 preview 測試

當我們在達哥平台上創建完 Assistant 時,若想進行 preview 測試,我們提供與 gradio 串接的 sample code。以下為教學步驟:

  1. 取得 User API key:

    1. 點選達哥面板左下角的 Settings按鈕

      image-20241018-034547.png

    2. 點選 Assistant API Key 後,點選 + API Key 按鈕新增

      image-20241202-014352.pngimage-20241202-014436.png
    3. 複製 API Key

      image-20240628-075157.png
  2. 取得 Assistant ID

    1. 選取欲 preview 的 Assistant,點選 Setting 按鈕

      image-20240628-075641.png
    2. 選取 Advanced tab,複製 Assistant ID

      image-20240628-075916.png
  3. Demo

    1. Text:

      1. 點選https://www.gradio.app/playground?demo=Hello_World&code=IyBQbGVhc2UgdXBkYXRlIHlvdXIgYXNzaXN0YW50IGlkIGFuZCBhcGkga2V5IGhlcmU6CkFQSV9LRVkgPSAiIgpBU1NJU1RBTlRfSUQgPSAiIgpBU1NJU1RBTlRfQVBJID0gImh0dHBzOi8vcHJvZC5kdmNib3QubmV0L2FwaS9hc3N0cy92MSIKCmltcG9ydCBtaWNyb3BpcDsgYXdhaXQgbWljcm9waXAuaW5zdGFsbCgnb3BlbmFpPT0xLjM5LjAnKTsgZnJvbSBweW9kaWRlLmh0dHAgaW1wb3J0IHB5ZmV0Y2g7IGltcG9ydCBodHRweDsgaW1wb3J0IGdyYWRpbyBhcyBncgpmcm9tIG9wZW5haSBpbXBvcnQgQXN5bmNPcGVuQUkKZnJvbSBkYXRldGltZSBpbXBvcnQgZGF0ZXRpbWUKaW1wb3J0IGpzb24KCmNsYXNzIFRyYW5zcG9ydChodHRweC5Bc3luY0Jhc2VUcmFuc3BvcnQpOgogICAgYXN5bmMgZGVmIGhhbmRsZV9hc3luY19yZXF1ZXN0KHNlbGYsIHJlcXVlc3Q6IGh0dHB4LlJlcXVlc3QpOgogICAgICAgIHJlc3AgPSBhd2FpdCBweWZldGNoKHN0cihyZXF1ZXN0LnVybCksIG1ldGhvZD1yZXF1ZXN0Lm1ldGhvZCwgaGVhZGVycz1kaWN0KHJlcXVlc3QuaGVhZGVycy5pdGVtcygpKSwgYm9keT1qc29uLmR1bXBzKGpzb24ubG9hZHMocmVxdWVzdC5jb250ZW50KSwgZW5zdXJlX2FzY2lpPUZhbHNlKS5lbmNvZGUoKSBpZiByZXF1ZXN0Lm1ldGhvZCAhPSAnR0VUJyBhbmQgcmVxdWVzdC5tZXRob2QgIT0gJ0RFTEVURScgZWxzZSBOb25lKQogICAgICAgIHJldHVybiBodHRweC5SZXNwb25zZShyZXNwLnN0YXR1cywgaGVhZGVycz1yZXNwLmhlYWRlcnMsIHN0cmVhbT1odHRweC5CeXRlU3RyZWFtKGF3YWl0IHJlc3AuYnl0ZXMoKSkpCgpjbGllbnQgPSBBc3luY09wZW5BSShiYXNlX3VybD1BU1NJU1RBTlRfQVBJLCBhcGlfa2V5PUFQSV9LRVksIGh0dHBfY2xpZW50PWh0dHB4LkFzeW5jQ2xpZW50KHRyYW5zcG9ydD1UcmFuc3BvcnQoKSkpCmlmIF9fbmFtZV9fID09ICJfX21haW5fXyI6CiAgICBhc3luYyBkZWYgc2VuZF9tZXNzYWdlKG1lc3NhZ2UsIGhpc3RvcnkpOgogICAgICAgIHRocmVhZCA9IGF3YWl0IGNsaWVudC5iZXRhLnRocmVhZHMuY3JlYXRlKG1lc3NhZ2VzPVt7InJvbGUiOiAidXNlciIgaWYgaSA9PSAwIGVsc2UgImFzc2lzdGFudCIsICJjb250ZW50IjogY30gZm9yIHAgaW4gaGlzdG9yeSBmb3IgaSwgYyBpbiBlbnVtZXJhdGUocCldKQogICAgICAgIGF3YWl0IGNsaWVudC5iZXRhLnRocmVhZHMubWVzc2FnZXMuY3JlYXRlKHRocmVhZF9pZD10aHJlYWQuaWQsIHJvbGU9J3VzZXInLCBjb250ZW50PW1lc3NhZ2UpCiAgICAgICAgcnVuID0gYXdhaXQgY2xpZW50LmJldGEudGhyZWFkcy5ydW5zLmNyZWF0ZV9hbmRfcG9sbCh0aHJlYWRfaWQ9dGhyZWFkLmlkLCBhc3Npc3RhbnRfaWQ9QVNTSVNUQU5UX0lELCBhZGRpdGlvbmFsX2luc3RydWN0aW9ucz1mIlxuVGhlIGN1cnJlbnQgdGltZSBpczoge2RhdGV0aW1lLm5vdygpfSIsIHRpbWVvdXQ9Mi4wKQogICAgICAgIHdoaWxlIHJ1bi5zdGF0dXMgPT0gJ3JlcXVpcmVzX2FjdGlvbicgYW5kIHJ1bi5yZXF1aXJlZF9hY3Rpb246CiAgICAgICAgICAgIG91dHB1dHMgPSBbXQogICAgICAgICAgICBmb3IgY2FsbCBpbiBydW4ucmVxdWlyZWRfYWN0aW9uLnN1Ym1pdF90b29sX291dHB1dHMudG9vbF9jYWxsczoKICAgICAgICAgICAgICAgIHJlc3AgPSBhd2FpdCBjbGllbnQuX2NsaWVudC5wb3N0KEFTU0lTVEFOVF9BUEkrJy9wbHVnaW5hcGknLCBwYXJhbXM9eyJ0aWQiOiB0aHJlYWQuaWQsICJhaWQiOiBBU1NJU1RBTlRfSUQsICJwaWQiOiBjYWxsLmZ1bmN0aW9uLm5hbWV9LCBoZWFkZXJzPXsiQXV0aG9yaXphdGlvbiI6ICJCZWFyZXIgIiArIEFQSV9LRVl9LCBqc29uPWpzb24ubG9hZHMoY2FsbC5mdW5jdGlvbi5hcmd1bWVudHMpKQogICAgICAgICAgICAgICAgb3V0cHV0cy5hcHBlbmQoeyJ0b29sX2NhbGxfaWQiOiBjYWxsLmlkLCAib3V0cHV0IjogcmVzcC50ZXh0Wzo4MDAwXX0pCiAgICAgICAgICAgIHJ1biA9IGF3YWl0IGNsaWVudC5iZXRhLnRocmVhZHMucnVucy5zdWJtaXRfdG9vbF9vdXRwdXRzX2FuZF9wb2xsKHJ1bl9pZD1ydW4uaWQsIHRocmVhZF9pZD10aHJlYWQuaWQsIHRvb2xfb3V0cHV0cz1vdXRwdXRzLCB0aW1lb3V0PTIuMCkKICAgICAgICBpZiBydW4uc3RhdHVzID09ICdmYWlsZWQnIGFuZCBydW4ubGFzdF9lcnJvcjoKICAgICAgICAgICAgcmV0dXJuIHJ1bi5sYXN0X2Vycm9yLm1vZGVsX2R1bXBfanNvbigpCiAgICAgICAgbXNncyA9IGF3YWl0IGNsaWVudC5iZXRhLnRocmVhZHMubWVzc2FnZXMubGlzdCh0aHJlYWRfaWQ9dGhyZWFkLmlkLCBvcmRlcj0nZGVzYycpCiAgICAgICAgYXdhaXQgY2xpZW50LmJldGEudGhyZWFkcy5kZWxldGUodGhyZWFkX2lkPXRocmVhZC5pZCkKICAgICAgICByZXR1cm4gbXNncy5kYXRhWzBdLmNvbnRlbnRbMF0udGV4dC52YWx1ZQogICAgZGVtbyA9IGdyLkNoYXRJbnRlcmZhY2Uoc2VuZF9tZXNzYWdlKQogICAgZGVtby5sYXVuY2goKQo=

      2. 替換掉對應的 API_KEYASSISTANT_ID

        image-20240628-080723.png

      3. 在輸入框輸入即可

        image-20240628-080750.png

    2. Image:

      1. 點選https://www.gradio.app/playground?demo=Hello_World&code=IyBQbGVhc2UgdXBkYXRlIHlvdXIgYXNzaXN0YW50IGlkIGFuZCBhcGkga2V5IGhlcmU6CkFQSV9LRVkgPSAiIgpBU1NJU1RBTlRfSUQgPSAiIgpBU1NJU1RBTlRfQVBJID0gImh0dHBzOi8vcHJvZC5kdmNib3QubmV0L2FwaS9hc3N0cy92MSIKCmltcG9ydCBtaWNyb3BpcDsgYXdhaXQgbWljcm9waXAuaW5zdGFsbCgnb3BlbmFpPT0xLjM5LjAnKTsgZnJvbSBweW9kaWRlLmh0dHAgaW1wb3J0IHB5ZmV0Y2g7IGltcG9ydCBodHRweDsgaW1wb3J0IGdyYWRpbyBhcyBncgpmcm9tIG9wZW5haSBpbXBvcnQgQXN5bmNPcGVuQUkKZnJvbSBkYXRldGltZSBpbXBvcnQgZGF0ZXRpbWUKaW1wb3J0IGpzb24KCmNsYXNzIFRyYW5zcG9ydChodHRweC5Bc3luY0Jhc2VUcmFuc3BvcnQpOgogICAgYXN5bmMgZGVmIGhhbmRsZV9hc3luY19yZXF1ZXN0KHNlbGYsIHJlcXVlc3Q6IGh0dHB4LlJlcXVlc3QpOgogICAgICAgIHJlc3AgPSBhd2FpdCBweWZldGNoKHN0cihyZXF1ZXN0LnVybCksIG1ldGhvZD1yZXF1ZXN0Lm1ldGhvZCwgaGVhZGVycz1kaWN0KHJlcXVlc3QuaGVhZGVycy5pdGVtcygpKSwgYm9keT1qc29uLmR1bXBzKGpzb24ubG9hZHMocmVxdWVzdC5jb250ZW50KSwgZW5zdXJlX2FzY2lpPUZhbHNlKS5lbmNvZGUoKSBpZiByZXF1ZXN0Lm1ldGhvZCAhPSAnR0VUJyBhbmQgcmVxdWVzdC5tZXRob2QgIT0gJ0RFTEVURScgZWxzZSBOb25lKQogICAgICAgIHJldHVybiBodHRweC5SZXNwb25zZShyZXNwLnN0YXR1cywgaGVhZGVycz1yZXNwLmhlYWRlcnMsIHN0cmVhbT1odHRweC5CeXRlU3RyZWFtKGF3YWl0IHJlc3AuYnl0ZXMoKSkpCgpjbGllbnQgPSBBc3luY09wZW5BSShiYXNlX3VybD1BU1NJU1RBTlRfQVBJLCBhcGlfa2V5PUFQSV9LRVksIGh0dHBfY2xpZW50PWh0dHB4LkFzeW5jQ2xpZW50KHRyYW5zcG9ydD1UcmFuc3BvcnQoKSkpCmlmIF9fbmFtZV9fID09ICJfX21haW5fXyI6CiAgICBhc3luYyBkZWYgc2VuZF9tZXNzYWdlKG1lc3NhZ2UsIGhpc3RvcnkpOgogICAgICAgIHRocmVhZCA9IGF3YWl0IGNsaWVudC5iZXRhLnRocmVhZHMuY3JlYXRlKG1lc3NhZ2VzPVt7InJvbGUiOiAidXNlciIgaWYgaSA9PSAwIGVsc2UgImFzc2lzdGFudCIsICJjb250ZW50IjogY30gZm9yIHAgaW4gaGlzdG9yeSBmb3IgaSwgYyBpbiBlbnVtZXJhdGUocCldKQogICAgICAgIGltYWdlX2NvbnRlbnQgPSBbeyd0eXBlJzogJ2ltYWdlX3VybCcsICdpbWFnZV91cmwnOiB7CiAgICAgICAgICAgICd1cmwnOiBtZXNzYWdlCiAgICAgICAgICB9CiAgICAgICAgfV0KICAgICAgICBhd2FpdCBjbGllbnQuYmV0YS50aHJlYWRzLm1lc3NhZ2VzLmNyZWF0ZSh0aHJlYWRfaWQ9dGhyZWFkLmlkLCByb2xlPSd1c2VyJywgY29udGVudD1pbWFnZV9jb250ZW50KQogICAgICAgIHJ1biA9IGF3YWl0IGNsaWVudC5iZXRhLnRocmVhZHMucnVucy5jcmVhdGVfYW5kX3BvbGwodGhyZWFkX2lkPXRocmVhZC5pZCwgYXNzaXN0YW50X2lkPUFTU0lTVEFOVF9JRCwgYWRkaXRpb25hbF9pbnN0cnVjdGlvbnM9ZiJcblRoZSBjdXJyZW50IHRpbWUgaXM6IHtkYXRldGltZS5ub3coKX0iLCB0aW1lb3V0PTIuMCkKICAgICAgICB3aGlsZSBydW4uc3RhdHVzID09ICdyZXF1aXJlc19hY3Rpb24nIGFuZCBydW4ucmVxdWlyZWRfYWN0aW9uOgogICAgICAgICAgICBvdXRwdXRzID0gW10KICAgICAgICAgICAgZm9yIGNhbGwgaW4gcnVuLnJlcXVpcmVkX2FjdGlvbi5zdWJtaXRfdG9vbF9vdXRwdXRzLnRvb2xfY2FsbHM6CiAgICAgICAgICAgICAgICByZXNwID0gYXdhaXQgY2xpZW50Ll9jbGllbnQucG9zdChBU1NJU1RBTlRfQVBJKycvcGx1Z2luYXBpJywgcGFyYW1zPXsidGlkIjogdGhyZWFkLmlkLCAiYWlkIjogQVNTSVNUQU5UX0lELCAicGlkIjogY2FsbC5mdW5jdGlvbi5uYW1lfSwgaGVhZGVycz17IkF1dGhvcml6YXRpb24iOiAiQmVhcmVyICIgKyBBUElfS0VZfSwganNvbj1qc29uLmxvYWRzKGNhbGwuZnVuY3Rpb24uYXJndW1lbnRzKSkKICAgICAgICAgICAgICAgIG91dHB1dHMuYXBwZW5kKHsidG9vbF9jYWxsX2lkIjogY2FsbC5pZCwgIm91dHB1dCI6IHJlc3AudGV4dFs6ODAwMF19KQogICAgICAgICAgICBydW4gPSBhd2FpdCBjbGllbnQuYmV0YS50aHJlYWRzLnJ1bnMuc3VibWl0X3Rvb2xfb3V0cHV0c19hbmRfcG9sbChydW5faWQ9cnVuLmlkLCB0aHJlYWRfaWQ9dGhyZWFkLmlkLCB0b29sX291dHB1dHM9b3V0cHV0cywgdGltZW91dD0yLjApCiAgICAgICAgaWYgcnVuLnN0YXR1cyA9PSAnZmFpbGVkJyBhbmQgcnVuLmxhc3RfZXJyb3I6CiAgICAgICAgICAgIHJldHVybiBydW4ubGFzdF9lcnJvci5tb2RlbF9kdW1wX2pzb24oKQogICAgICAgIG1zZ3MgPSBhd2FpdCBjbGllbnQuYmV0YS50aHJlYWRzLm1lc3NhZ2VzLmxpc3QodGhyZWFkX2lkPXRocmVhZC5pZCwgb3JkZXI9J2Rlc2MnKQogICAgICAgIGF3YWl0IGNsaWVudC5iZXRhLnRocmVhZHMuZGVsZXRlKHRocmVhZF9pZD10aHJlYWQuaWQpCiAgICAgICAgcmV0dXJuIG1zZ3MuZGF0YVswXS5jb250ZW50WzBdLnRleHQudmFsdWUKICAgIGRlbW8gPSBnci5DaGF0SW50ZXJmYWNlKHNlbmRfbWVzc2FnZSkKICAgIGRlbW8ubGF1bmNoKCkK

      2. 替換掉對應的 API_KEYASSISTANT_ID

        image-20240628-080723.png

      3. 在輸入框輸入 image url 即可

        image-20240628-080750.png

        1. 如果您想要使用本機影像,您可以使用下列 Python 程式碼將它轉換成 base64,以便將其傳遞至 API。 或者您可以使用線上工具將影像檔轉成 base64。

          import base64
          from mimetypes import guess_type
          
          # Function to encode a local image into data URL 
          def local_image_to_data_url(image_path):
              # Guess the MIME type of the image based on the file extension
              mime_type, _ = guess_type(image_path)
              if mime_type is None:
                  mime_type = 'application/octet-stream'  # Default MIME type if none is found
          
              # Read and encode the image file
              with open(image_path, "rb") as image_file:
                  base64_encoded_data = base64.b64encode(image_file.read()).decode('utf-8')
          
              # Construct the data URL
              return f"data:{mime_type};base64,{base64_encoded_data}"
          
          # Example usage
          image_path = '<path_to_image>'
          data_url = local_image_to_data_url(image_path)
          print("Data URL:", data_url)

得到 base64 字串後,在輸入框輸入以下格式即可

"data:image/jpeg;base64,<your_image_data>"

Gradio Sample code (for backup),如果上面 Gradio 連結打不開,可以把這段 paste 進 Gradio playground

# Please update your assistant id and api key here:
API_KEY = ""
ASSISTANT_ID = ""
ASSISTANT_API = "https://prod.dvcbot.net/api/assts/v1"

import micropip; await micropip.install('openai==1.39.0'); from pyodide.http import pyfetch; import httpx; import gradio as gr
from openai import AsyncOpenAI
from datetime import datetime
import json

class Transport(httpx.AsyncBaseTransport):
    async def handle_async_request(self, request: httpx.Request):
        resp = await pyfetch(str(request.url), method=request.method, headers=dict(request.headers.items()), body=json.dumps(json.loads(request.content), ensure_ascii=False).encode() if request.method != 'GET' and request.method != 'DELETE' else None)
        return httpx.Response(resp.status, headers=resp.headers, stream=httpx.ByteStream(await resp.bytes()))

client = AsyncOpenAI(base_url=ASSISTANT_API, api_key=API_KEY, http_client=httpx.AsyncClient(transport=Transport()))
if __name__ == "__main__":
    async def send_message(message, history):
        thread = await client.beta.threads.create(messages=[{"role": "user" if i == 0 else "assistant", "content": c} for p in history for i, c in enumerate(p)])
        await client.beta.threads.messages.create(thread_id=thread.id, role='user', content=message)
        run = await client.beta.threads.runs.create_and_poll(thread_id=thread.id, assistant_id=ASSISTANT_ID, additional_instructions=f"\nThe current time is: {datetime.now()}", timeout=2.0)
        while run.status == 'requires_action' and run.required_action:
            outputs = []
            for call in run.required_action.submit_tool_outputs.tool_calls:
                resp = await client._client.post(ASSISTANT_API+'/pluginapi', params={"tid": thread.id, "aid": ASSISTANT_ID, "pid": call.function.name}, headers={"Authorization": "Bearer " + API_KEY}, json=json.loads(call.function.arguments))
                outputs.append({"tool_call_id": call.id, "output": resp.text[:8000]})
            run = await client.beta.threads.runs.submit_tool_outputs_and_poll(run_id=run.id, thread_id=thread.id, tool_outputs=outputs, timeout=2.0)
        if run.status == 'failed' and run.last_error:
            return run.last_error.model_dump_json()
        msgs = await client.beta.threads.messages.list(thread_id=thread.id, order='desc')
        await client.beta.threads.delete(thread_id=thread.id)
        return msgs.data[0].content[0].text.value
    demo = gr.ChatInterface(send_message)
    demo.launch()

MediaTek DaVinci Assistant API 使用教學

Curl

常用 API curl 範例

  • 請注意,如果不是用 sandbox 進行 PoC,而是自行部屬,請將所有 api 使用中的 url “https://prod.dvcbot.net“ 修改成自行部屬的 url。

create thread

curl https://prod.dvcbot.net/api/assts/v1/threads \
  -H "Authorization: ${YOUR API KEY}" \
  -H 'Content-Type: application/json' \
  -d ''

create msg

curl https://prod.dvcbot.net/api/assts/v1/threads/{thread_id}/messages \
  -H "Authorization: ${YOUR API KEY}" \
  -H 'Content-Type: application/json' \
  -d '{
      "role": "user",
      "content": "How does AI work? Explain it in simple terms."
    }'

create run (non streaming)

curl https://prod.dvcbot.net/api/assts/v1/threads/{thread_id}/runs \
  -H "Authorization: ${YOUR API KEY}" \
  -H 'Content-Type: application/json' \
  -d '{
    "assistant_id": "asst_abc123"
  }'

call plugin api

curl https://prod.dvcbot.net/api/assts/v1/pluginapi?tid={thread_id}&aid={assistant_id}&pid={function_name} \
  -H "Authorization: ${YOUR API KEY}" \
  -H 'Content-Type: application/json' \
  -d ' # function arguments'

submit tool outputs to run

curl https://prod.dvcbot.net/api/assts/v1/threads/{thread_id}/runs/{run_id}/submit_tool_outputs \
  -H "Authorization: ${YOUR API KEY}" \
  -H 'Content-Type: application/json' \
  -d '{
    "tool_outputs": [
      {
        "tool_call_id": "call_abc123",
        "output": "28C"
      }
    ]
  }'

Wrap up: use curl to write a script

將上面常用的 curl api 組合在一起,即可用 bash 完成一個陽春版的達哥對話腳本:

  1. 要先拿到 Assistant ID & User API key

  2. export API_KEYASSISTANT_ID 以及你的 INPUT_MSG

    export ASSISTANT_ID="YOUR ASSISTANT ID"
    export API_KEY="YOUR API KEY"
    export INPUT_MSG="YOUR MESSAGE TO ASSISTANT"
  3. 執行以下腳本 (請先確保環境有安裝 jq 套件)

    1. mac: brew install jq

    2. ubuntu: apt-get install jq

    3. cent os: yum install jq

  4. BASE_URL="https://prod.dvcbot.net/api/assts/v1"
    
    # create thread
    AUTH_HEADER="Authorization: Bearer ${API_KEY}"
    THREAD_URL="${BASE_URL}/threads"
    THREAD_ID=`curl -s --location "${THREAD_URL}" \
    --header 'OpenAI-Beta: assistants=v2' \
    --header 'Content-Type: application/json' \
    --header "${AUTH_HEADER}" \
    --data '{}' | jq .id | tr -d '"'`
    
    # add msg to thread
    CREATE_MSG_DATA=$(< <(cat <<EOF
    {
      "role": "user",
      "content": "$INPUT_MSG"
    }
    EOF
    ))
    MSG_URL="${BASE_URL}/threads/${THREAD_ID}/messages"
    curl -s --location "${MSG_URL}" \
    --header 'OpenAI-Beta: assistants=v2' \
    --header 'Content-Type: application/json' \
    --header "${AUTH_HEADER}" \
    --data "${CREATE_MSG_DATA}" > /dev/null
    
    # run the assistant within thread
    CREATE_RUN_DATA=$(< <(cat <<EOF
    {
      "assistant_id": "$ASSISTANT_ID",
      "additional_instructions": "The current time is: `date '+%Y-%m-%d %H:%M:%S'`"
    }
    EOF
    ))
    
    RUN_URL="${BASE_URL}/threads/${THREAD_ID}/runs"
    RUN_ID=`curl -s --location "${RUN_URL}" \
    --header 'OpenAI-Beta: assistants=v2' \
    --header 'Content-Type: application/json' \
    --header "${AUTH_HEADER}" \
    --data "${CREATE_RUN_DATA}" | jq .id | tr -d '"'`
    
    # get run result
    RUN_STAUS=""
    while [[ $RUN_STAUS != "completed" ]]
    do
        RESP=`curl -s --location --request GET "${RUN_URL}/$RUN_ID" \
    --header 'OpenAI-Beta: assistants=v2' \
    --header 'Content-Type: application/json' \
    --header "${AUTH_HEADER}"`
    
        RUN_STAUS=`echo $RESP| jq .status | tr -d '"'`;
        REQUIRED_ACTION=`echo $RESP| jq .required_action`
    
        while [[ $RUN_STAUS = "requires_action" ]] && [[ ! -z "$REQUIRED_ACTION" ]]
        do
            TOOL_OUTPUTS='[]'
            LEN=$( echo "$REQUIRED_ACTION" | jq '.submit_tool_outputs.tool_calls | length' )
            for (( i=0; i<$LEN; i++ ))
            do
                FUNC_NAME=`echo "$REQUIRED_ACTION" | jq ".submit_tool_outputs.tool_calls[$i].function.name" | tr -d '"'`
    
                ARGS=`echo "$REQUIRED_ACTION" | jq ".submit_tool_outputs.tool_calls[$i].function.arguments"`
                ARGS=${ARGS//\\\"/\"}
                ARGS=${ARGS#"\""}
                ARGS=${ARGS%"\""}
    
                PLUGINAPI_URL="${BASE_URL}/pluginapi?tid=${THREAD_ID}&aid=${ASSISTANT_ID}&pid=${FUNC_NAME}"
                OUTPUT=`curl -s --location "${PLUGINAPI_URL}" \
    --header 'OpenAI-Beta: assistants=v2' \
    --header 'Content-Type: application/json' \
    --header "${AUTH_HEADER}" \
    --data "${ARGS}"`
                OUTPUT="${OUTPUT:0:8000}"
                OUTPUT=${OUTPUT//\"/\\\"}
                CALL_ID=`echo "$REQUIRED_ACTION" | jq ".submit_tool_outputs.tool_calls[$i].id" | tr -d '"'`
                TOOL_OUTPUT=$(< <(cat <<EOF
    {
      "tool_call_id": "$CALL_ID",
      "output": "$OUTPUT"
    }
    EOF
    ))
                TOOL_OUTPUTS=$(jq --argjson obj "$TOOL_OUTPUT" '. += [$obj]' <<< "$TOOL_OUTPUTS")
            done
    
            SUBMIT_TOOL_OUTPUT_RUN_RUL="${BASE_URL}/threads/${THREAD_ID}/runs/${RUN_ID}/submit_tool_outputs"
    
            TOOL_OUTPUTS_DATA=$(< <(cat <<EOF
    {
      "tool_outputs": $TOOL_OUTPUTS
    }
    EOF
    ))
    
            curl -s --location "${SUBMIT_TOOL_OUTPUT_RUN_RUL}" \
    --header 'OpenAI-Beta: assistants=v2' \
    --header 'Content-Type: application/json' \
    --header "${AUTH_HEADER}" \
    --data "${TOOL_OUTPUTS_DATA}" > /dev/null
    
            RESP=`curl -s --location --request GET "${RUN_URL}/$RUN_ID" \
    --header 'OpenAI-Beta: assistants=v2' \
    --header 'Content-Type: application/json' \
    --header "${AUTH_HEADER}"`
            RUN_STAUS=`echo $RESP| jq .status | tr -d '"'`;
            sleep 1
        done
        sleep 1
    done
    
    #list msg
    RESPONSE_MSG=`curl -s --location --request GET "${MSG_URL}" \
    --header 'OpenAI-Beta: assistants=v2' \
    --header 'Content-Type: application/json' \
    --header "${AUTH_HEADER}" | jq .data[0].content[].text.value`
    
    echo "you: "$INPUT_MSG
    echo ""
    echo "davinci bot: "$RESPONSE_MSG
  5. 即可看到結果如下

    you: "your message here"
    davinci bot: "response from assistant"

Image

  1. 要先拿到 Assistant ID & User API key

  2. export API_KEYASSISTANT_ID 以及你的 INPUT_MSG

    export ASSISTANT_ID="YOUR ASSISTANT ID"
    export API_KEY="YOUR API KEY"
    export IMAGE_URL="YOUR IMAGE URL HEHE"
    1. IMAGE_URL 格式參考上方 Gradio image 範例

  3. 執行以下腳本 (請先確保環境有安裝 jq 套件)

    1. mac: brew install jq

    2. ubuntu: apt-get install jq

    3. cent os: yum install jq

  4. BASE_URL="https://prod.dvcbot.net/api/assts/v1"
    # create thread
    AUTH_HEADER="Authorization: Bearer ${API_KEY}"
    THREAD_URL="${BASE_URL}/threads"
    THREAD_ID=`curl -s --location "${THREAD_URL}" \
    --header 'OpenAI-Beta: assistants=v2' \
    --header 'Content-Type: application/json' \
    --header "${AUTH_HEADER}" \
    --data '{}' | jq .id | tr -d '"'`
    # add msg to thread
    CREATE_MSG_DATA=$(< <(cat <<EOF
    {
      "role": "user",
      "content": [
        {
            "type": "image_url",
            "image_url": {
                "url": "$IMAGE_URL"
            }
        }
      ]
    }
    EOF
    ))
    
    MSG_URL="${BASE_URL}/threads/${THREAD_ID}/messages"
    curl -s --location "${MSG_URL}" \
    --header 'OpenAI-Beta: assistants=v2' \
    --header 'Content-Type: application/json' \
    --header "${AUTH_HEADER}" \
    --data "${CREATE_MSG_DATA}" > /dev/null
    # run the assistant within thread
    CREATE_RUN_DATA=$(< <(cat <<EOF
    {
      "assistant_id": "$ASSISTANT_ID",
      "additional_instructions": "The current time is: `date '+%Y-%m-%d %H:%M:%S'`"
    }
    EOF
    ))
    RUN_URL="${BASE_URL}/threads/${THREAD_ID}/runs"
    RUN_ID=`curl -s --location "${RUN_URL}" \
    --header 'OpenAI-Beta: assistants=v2' \
    --header 'Content-Type: application/json' \
    --header "${AUTH_HEADER}" \
    --data "${CREATE_RUN_DATA}" | jq .id | tr -d '"'`
    # get run result
    RUN_STAUS=""
    while [[ $RUN_STAUS != "completed" ]]
    do
        RESP=`curl -s --location --request GET "${RUN_URL}/$RUN_ID" \
    --header 'OpenAI-Beta: assistants=v2' \
    --header 'Content-Type: application/json' \
    --header "${AUTH_HEADER}"`
        RUN_STAUS=`echo $RESP| jq .status | tr -d '"'`;
        REQUIRED_ACTION=`echo $RESP| jq .required_action`
        while [[ $RUN_STAUS = "requires_action" ]] && [[ ! -z "$REQUIRED_ACTION" ]]
        do
            TOOL_OUTPUTS='[]'
            LEN=$( echo "$REQUIRED_ACTION" | jq '.submit_tool_outputs.tool_calls | length' )
            for (( i=0; i<$LEN; i++ ))
            do
                FUNC_NAME=`echo "$REQUIRED_ACTION" | jq ".submit_tool_outputs.tool_calls[$i].function.name" | tr -d '"'`
                ARGS=`echo "$REQUIRED_ACTION" | jq ".submit_tool_outputs.tool_calls[$i].function.arguments"`
                ARGS=${ARGS//\\\"/\"}
                ARGS=${ARGS#"\""}
                ARGS=${ARGS%"\""}
                PLUGINAPI_URL="${BASE_URL}/pluginapi?tid=${THREAD_ID}&aid=${ASSISTANT_ID}&pid=${FUNC_NAME}"
                OUTPUT=`curl -s --location "${PLUGINAPI_URL}" \
    --header 'OpenAI-Beta: assistants=v2' \
    --header 'Content-Type: application/json' \
    --header "${AUTH_HEADER}" \
    --data "${ARGS}"`
                OUTPUT="${OUTPUT:0:8000}"
                OUTPUT=${OUTPUT//\"/\\\"}
                CALL_ID=`echo "$REQUIRED_ACTION" | jq ".submit_tool_outputs.tool_calls[$i].id" | tr -d '"'`
                TOOL_OUTPUT=$(< <(cat <<EOF
    {
      "tool_call_id": "$CALL_ID",
      "output": "$OUTPUT"
    }
    EOF
    ))
                TOOL_OUTPUTS=$(jq --argjson obj "$TOOL_OUTPUT" '. += [$obj]' <<< "$TOOL_OUTPUTS")
            done
            SUBMIT_TOOL_OUTPUT_RUN_RUL="${BASE_URL}/threads/${THREAD_ID}/runs/${RUN_ID}/submit_tool_outputs"
            TOOL_OUTPUTS_DATA=$(< <(cat <<EOF
    {
      "tool_outputs": $TOOL_OUTPUTS
    }
    EOF
    ))
            curl -s --location "${SUBMIT_TOOL_OUTPUT_RUN_RUL}" \
    --header 'OpenAI-Beta: assistants=v2' \
    --header 'Content-Type: application/json' \
    --header "${AUTH_HEADER}" \
    --data "${TOOL_OUTPUTS_DATA}" > /dev/null
            RESP=`curl -s --location --request GET "${RUN_URL}/$RUN_ID" \
    --header 'OpenAI-Beta: assistants=v2' \
    --header 'Content-Type: application/json' \
    --header "${AUTH_HEADER}"`
            RUN_STAUS=`echo $RESP| jq .status | tr -d '"'`;
            sleep 1
        done
        sleep 1
    done
    #list msg
    RESPONSE_MSG=`curl -s --location --request GET "${MSG_URL}" \
    --header 'OpenAI-Beta: assistants=v2' \
    --header 'Content-Type: application/json' \
    --header "${AUTH_HEADER}" | jq .data[0].content[].text.value`
    
    echo ""
    echo "davinci bot: "$RESPONSE_MSG
  5. 即可看到結果如下

    davinci bot: "response from assistant"

Python

Text or image as Input

import json
from openai import OpenAI
from datetime import datetime

ASSISTANT_API = 'https://prod.dvcbot.net/api/assts/v1'
API_KEY = ''
client = OpenAI(
    base_url=ASSISTANT_API,
    api_key=API_KEY,
)
ASSISTANT_ID = ''

# 定義多個訊息
messages = [
    {"type": "text", "text": "tell me about the image"},
    {"type": "image_url", "image_url": {"url": "https://xxx.xxx.xxx.jpg"}},
    {"type": "text", "text": "What do you think about this image?"}
]

# 建立 thread
thread = client.beta.threads.create(messages=[])

# 連續發送訊息
for message in messages:
    client.beta.threads.messages.create(thread_id=thread.id, role='user', content=[message])

# 執行 assistant
run = client.beta.threads.runs.create_and_poll(thread_id=thread.id, assistant_id=ASSISTANT_ID, additional_instructions=f"\nThe current time is: {datetime.now()}", timeout=2.0)

while run.status == 'requires_action' and run.required_action:
    outputs = []
    for call in run.required_action.submit_tool_outputs.tool_calls:
        resp = client._client.post(ASSISTANT_API + '/pluginapi', params={"tid": thread.id, "aid": ASSISTANT_ID, "pid": call.function.name}, headers={"Authorization": "Bearer " + API_KEY}, json=json.loads(call.function.arguments))
        outputs.append({"tool_call_id": call.id, "output": resp.text[:8000]})
    run = client.beta.threads.runs.submit_tool_outputs_and_poll(run_id=run.id, thread_id=thread.id, tool_outputs=outputs, timeout=2.0)

if run.status == 'failed' and run.last_error:
    print(run.last_error.model_dump_json())

msgs = client.beta.threads.messages.list(thread_id=thread.id, order='desc')
client.beta.threads.delete(thread_id=thread.id)
print(msgs.data[0].content[0].text.value)

Text & image as input (Streaming)

import asyncio
import json

import httpx

from openai import AsyncOpenAI


ASSISTANT_API = "https://prod.dvcbot.net/api/assts/v1"

API_KEY = ""
ASSISTANT_ID = "" 

USER_PROMPT = "從一數到一千"


async def main():
    http_client = httpx.AsyncClient(verify=False)
    client = AsyncOpenAI(base_url=ASSISTANT_API, api_key=API_KEY, http_client=http_client)

    thread = await client.beta.threads.create()

    user_prompt = USER_PROMPT

    await client.beta.threads.messages.create(
        thread_id=thread.id,
        role="user",
        content=user_prompt,
    )

    stream = await client.beta.threads.runs.create(
        assistant_id=ASSISTANT_ID,
        thread_id=thread.id,
        stream=True,
    )
    requires_action_run_id = ""
    async for event in stream:
        if event.event == "thread.message.delta":
            print(event)
        elif event.event == "thread.run.requires_action":
            requires_action_run_id = event.data.id

    if requires_action_run_id != "":
        run = await client.beta.threads.runs.retrieve(requires_action_run_id, thread_id=thread.id)
        outputs = []
        for call in run.required_action.submit_tool_outputs.tool_calls:
            print(f"call plugin {call.function.name} with args: {call.function.arguments}")
            resp = await client._client.post(
                ASSISTANT_API + "/pluginapi",
                params={"tid": thread.id, "aid": ASSISTANT_ID, "pid": call.function.name},
                headers={"Authorization": "Bearer " + API_KEY},
                json=json.loads(call.function.arguments),
                timeout=30,
            )
            result = resp.text[:8000]
            print(f"plugin {call.function.name} result {result}")
            outputs.append({"tool_call_id": call.id, "output": result})
        stream = await client.beta.threads.runs.submit_tool_outputs(
            run_id=run.id,
            stream=True,
            thread_id=thread.id,
            tool_outputs=outputs,
        )
        async for event in stream:
            print(event)

    await client.beta.threads.delete(thread_id=thread.id)


if __name__ == "__main__":
    asyncio.run(main())

Voice mode

(Coming Soon)

  • 無標籤